一对竞争的科学理论:暗物质与修改引力理论 | 返朴
The following article is from 返朴 Author 陈学雷
■ 导言
“暗物质”一直是物理学有待解决的大问题之一。天文学家发现,通过实际观测得到的星系运动速度并不能用常规的动力学理论来解释,需要更多的引力来源,因此提出引入“看不见”的暗物质——这是目前的主流理论。但暗物质现象的解释并非只有这一种,它有一个竞争的科学理论,即修改引力理论(MOND)——通过修改牛顿动力学而不引入暗物质来解释暗物质现象。它是一个优秀的理论吗?它的成功与挑战又在何处?本文将对这一理论进行简要介绍,并与暗物质模型理论进行对比。
在科普讲座或者朋友聚会中,我常常需要向外行的听众朋友们解释“暗物质”的概念。我会告诉他们,现在的天文学家们发现,我们所熟悉的普通物质只占宇宙总密度的大约4.7%,而95%以上的密度则来自暗物质(约25%)和暗能量(约70%)这两种未知成分。经常有人会问出一个厉害的问题:“你说暗物质的证据来自它的引力,有没有可能你们天文学家把引力弄错了?”一些更有怀疑精神的朋友则说,“也许有一天,会发现根本没有什么暗物质,就像没有以太一样。”我觉得这些问题非常好,反映了一种健康的科学怀疑态度。其实,虽然在科普报告或文章中限于时间不一定会提到,但不引入暗物质而试图用新的引力理论解释“暗物质现象”,也是天体物理研究中的一个学派,即所谓修改引力理论学派。
图1. Fritz Zwicky (左)和他研究的后发(Coma)星系团
02 修改牛顿动力学
当然,也有人不愿随大流。1980年,一位34岁的以色列物理学家密尔格罗姆(Mordehai Milgrom,图4)利用学术休假到理论物理的圣地——美国普林斯顿高等研究院访问,在此期间他提出了一种新的解释。密尔格罗姆指出,也许,并不存在什么暗物质晕,而是我们习以为常的万有引力定律或运动定律需要修改[1, 2]。
图4. 以色列物理学家Mordehai Milgrom
(1)
即在远离中心处旋转速度趋于常数。
根据对星系的观测,可得到上式中加速度常数的数值约为a0 ≈1.2×10-8 cm s-2 (a0的值需要根据观测拟合出来,密尔格罗姆最早给出的值为 2×10-8 cm s-2)。这一理论后来一般被称为修改牛顿动力学理论(MOdified Newtonian Dynamics),简称MOND理论。在这一理论中,没有引入暗物质,而是假定普通物质的引力或运动规律与标准理论不同,就能成功地解释星系旋转曲线。至于究竟是物体运动规律(牛顿第二运动定律)、还是万有引力定律(引力大小与距离平方成反比)被修改了,米尔格罗姆认为现在还不能确定,两种可能性都存在。
一个好的科学理论,不仅应该能够解释一种现象,而且最好能用同一理论对多种现象给出解释;不仅应能解释已知的现象,而且最好能预测未知的现象,并得到实验或观测的证实。密尔格罗姆发现,使用MOND理论,不仅可以很好地拟合星系的旋转曲线(预测其值趋近于一个常数),而且可以预测,这个旋转速度曲线最后速度的4次方正比于星系中我们观测到的普通物质的质量。而这一点,也得到了后续观测的很好证实。就在这一时期,天文学家Tully 和Fisher发现,星系的光度与其旋转速度之间存在 L~v4 的关系。如果做出最简单的假定,即星系的光度与其发光物质的质量成正比,那这一关系就完全可以用MOND来解释。相比之下,暗物质模型对Tully-Fisher关系的解释就复杂得多。虽然暗物质模型中,也可以假定星系的一切均受其暗晕质量影响,包括其普通物质的质量、星系的光度和旋转速度都随着暗晕质量增加,因此也能在旋转速度与光度之间找到某种关系,但在最简单的假设下得到的关系是L~v2。而且,在暗物质理论中,这些量之间虽然互相关联,但它们之间并没有严格确定的联系,因此预期这种关系应该有相当大的弥散;而按照MOND理论,这种关系应该是比较精确而没有太大误差的。实测的结果,是这一关系确实比较精确地成立(图5)。
03 修改引力理论的自洽性
一个好的科学理论必须自洽,物理学理论必须能对物体在各种情况下的运动给出预测和解释。对于MOND来说,这是一个挑战,因为这个理论是基于经验关系,而不是来自第一性原理,一旦问题超出原来的范围,就不好回答。比如说,上面的理论中只考虑单独一个星系。但是,远处的其它星系会产生如何影响?当然,我们可以做一些简单的假设,比如假定上面公式(2)中的引力加速度a 不是仅仅来自一个星系,而是所有星系引力加速度之和,这样本星系产生的引力加速度最大,并且一般来说其它星系影响并不大,因此不会产生太大的影响(影响较大的情况见后面第5节)。但是,这也只是一种假设而已,还有很多其它可能性。
广义相对论是现代物理学理论的基石,对时空和引力给出了一套自洽且构造严密的完整理论描述,牛顿理论仅是其近似。在广义相对论中,本身已没有牛顿理论中的力了,只有时空的弯曲;物体若不受其它外力,引力作用体现为沿着时空流形的短程线运动。暗物质理论仅仅是引入了一种新的物质成分,并不影响整个时空-引力理论,因此与广义相对论没有矛盾。但MOND理论就不一样了,由于它要求修改引力和动力学理论,因此动摇了整个广义相对论的基础;另一方面,MOND对引力的修改是从一个很特殊的观测现象出发,并没有第一性的原理,所以也很难确定,到底对广义相对论做什么样的修改才能得到这样的理论。因此,很长一段时间里,人们并没有一个相对论性的MOND理论。而这也导致,MOND的理论预言只能局限在星系动力学范围内。对于宇宙演化、光线偏折(引力透镜)、宇宙微波背景辐射等需要相对论理论才能解决的问题,原始的MOND理论无法给出明确的预测。
MOND理论的支持者们当然一直想构建出相对论性的修改引力理论,并做了很多尝试。但直到2002年,另一位以色列物理学家,以提出黑洞熵公式而著称的贝肯斯坦(Jacob Bekenstein)经过多年研究,才构造出了第一种既满足相对论、又能产生MOND行为的理论。在广义相对论中,描写时空弯曲的是所谓度规张量,而在这一理论中,引入了一个新的张量(tensor)场、一个矢量(vector)场、一个标量(scalar)场,以及一个辅助(非动力)标量场,通常的时空度规张量则由这几个量共同决定,因此被简称为张量-矢量-标量(TeVeS)理论[4]。
04 MOND的挑战:星系团
图7:子弹头星系团(bullet cluster)(1E0657-56):左图为光学图象,右图为X-射线图象。曲线表示根据引力透镜效应测出的投影密度分布。
子弹头星系团是两个星系团刚刚发生了高速对头碰撞形成的,如上图所示。星系团内各个星系之间的距离其实很相当大,因此当两个星系团碰撞时,这些星系就像两军对垒时互相射向对方的子弹一样,交错而过,穿到了对方的后面。每个星系团中各个星系之间还分布着许多气体,这些气体互相之间会产生相互作用,无法轻松地相互穿过,而是如同白刃格斗的两军战士一样,撞在一起,并激发出冲击波来。所以,气体分布在靠近整个碰撞残骸的中央,而星系则分布在两侧。星系团中气体温度比较高,会发射X-射线,图中的X-射线就显示了靠近残骸中央、正在向两侧传播的气体冲击波。
如果星系团中分布着暗物质,按照一般的暗物质理论,它们之间的相互作用微弱,因此也会像星系一样相互穿过。实际上按这一理论它们应该和星系没有分离,星系最多的地方也是暗物质最多的地方。由于暗物质占了星系团质量的大部分,因此两边星系最多的地方应该也是引力最强的地方。而按照MOND理论,并不存在暗物质,所有的引力来自普通物质,这既包括星系中的恒星,也包括星系之间的气体。但是在星系团中,星系之间气体的质量比星系中恒星的质量更大,如果没有暗物质而只是有修改引力的话,子弹头星系团中央才应该是物质密度最高、引力最强的地方。那么,如何测量引力呢?人们可以使用引力透镜效应:背景星系的光穿过子弹头星系团时,会被其引力偏折,导致我们看到的星系形状发生变化。虽然我们没有办法知道单个星系原来长什么样子,所以也并不知道单个星系受到的引力透镜效应有多强,但是对临近的很多个星系形状进行平均,就可以知道这一地方引力的强弱。人们在仔细测量了子弹头星系的引力透镜效应后发现,团中引力透镜效应最强的地方是两侧星系最多的地方,而不是中央气体最多的地方。这与暗物质理论相符,而与MOND理论不符[7]。
05 暗星系的挑战
随着观测技术的改进和大规模巡天的进行,天文学家们发现了许多更暗的星系,这些星系提供了新的检验MOND理论和暗物质理论的机会。
对于暗物质模型来说,这些比较暗的矮星系曾经一度构成了比较严重的挑战,被称为“小尺度危机”(small scale crisis)。标准的冷暗物质模型数值模拟预测在大暗晕中应该有许多子暗晕,小星系可以在这样的子暗晕中形成,因此银河系这样的大星系周围应该有成百上千的卫星星系,而当时人们所知道的卫星星系只有二十来个。这就是所谓“丢失的卫星(星系)”(missing satellite)问题[8]。已经发现的卫星星系的质量与理论相比也符合得不好,缺失一些理论预测的大质量卫星星系 (too big to fail problem)。此外,从这些星系的旋转曲线人们可以推测其中暗物质晕的密度是如何分布的。其中许多矮星系在中心都有一个“核”,其内密度基本是常数,而不是像模拟预测的那样,有越接近中心密度越高的“尖峰”,即所谓密度轮廓问题(density profile problem)[9]。
对于这些问题,暗物质研究者有两种解决的思路。一些学者认为,可能暗物质并非之前最为流行的冷暗物质,而是具有某种更为奇特的性质。因此,有温暗物质(warm dark matter)、模糊暗物质(fuzzy dark matter)、相互作用暗物质 (interacting dark matter) 等模型。另一些学者则认为,数值模拟可以很好地预测万有引力的作用,但是对于诸如气体的加热和冷却、恒星形成和反馈等复杂效应,则并不准确。因此,即便理论预测的那些暗物质晕子结构确实存在,但毕竟它们的引力比较小,容易被上面说的这些效应影响,导致其中很多无法形成卫星星系。
近年来的SDSS、Pan-Starr、DES等大规模巡天已发现了不少卫星星系[10],目前总数接近60。而当人们在数值模拟中引入普通物质后,则导致了较少的卫星星系[11]。因此,现有的暗物质理论与观测都还有较大不确定性,对暗物质理论还未构成严重的困难。
图8.已发现的银河系卫星星系(图中标注了发现该卫星星系的巡天)[10]
06 结论
总的说来,目前暗物质理论和MOND理论仍是一对竞争的科学理论。暗物质理论能够更容易地纳入现有的物理学框架,并且基于暗物质理论,可以对星系、星系团、大尺度结构增长、引力透镜、宇宙微波背景辐射等许多观测给出定量化的理论预测。总体来说这些预测与观测也符合得比较好,因此暗物质理论目前还是更受到大部分研究者的青睐而成为主流的理论。不过,自上世纪80年代以来,人们进行了许多暗物质探测实验,但迄今还未能探测到暗物质,因此暗物质理论还不能说已取得胜利。
MOND更像是一个经验模型,不容易纳入现有的物理学框架,相对论性的MOND理论都非常复杂,几个早期的模型如TeVeS和STVG已被引力波速度测量结果排除。不过,正如新出的RMOND模型所显示的,还是有可能构造出满足现有观测的模型。因此,MOND虽然目前不是主流,但仍不失为一种有竞争力的、值得继续研究的候选模型。这一理论也有不少坚定的支持者。在星系尺度上,总体来说MOND与观测符合得不错,在解释Tully-Fisher 关系等方面,甚至可能还有优于暗物质模型之处,但是在星系团尺度上表现不佳,还面临子弹头星系团的挑战。近期发现的一些暗星系也对MOND理论构成了新的挑战。
一些MOND 研究者似乎主观上总是感到他们受到了“主流”的打压或忽视。我不知道这种感受在多大程度上反映了客观真实。我觉得可能是“情人眼里出西施”,一些MOND研究者似乎真诚地相信自己的理论有很强的证据,而看不到其中的弱点,因而别人若没有被说服,就总觉得是别人心存偏见。比如,最近支持MOND的美国天文学家David Merritt写了一本书A Philosophical Approach to MOND(《MOND的哲学处理》)[15],旁征博引了波普耳、拉卡托斯、费耶阿本德等科学哲学家的理论,认为依照各种判据,MOND都胜过暗物质理论。但是,这里的争议问题并不在于各种不同的哲学判据,而在于他单纯强调了对MOND有利的证据,例如MOND对Tully-Fisher关系的成功预测,可是对于MOND在星系团中的困难,他就一笔带过了。而且,他似乎完全忽视了暗物质理论对微波背景辐射角功率谱和大尺度结构功率谱的成功预测(这是MOND理论所没有预测的)。他津津乐道有了相对论模型RMOND,却闭口不谈此前的TeVeS模型直接被引力波观测所证伪。RMOND理论虽然可以给出满足宇宙微波背景辐射和引力透镜观测的结果,但毕竟是个“马后炮”,而暗物质理论则是早在观测之前就成功地给出了这些预测。
我个人的看法是,暗物质与MOND模型的竞争是良性的。如果公平全面的看待各方面的证据和说服力,目前暗物质模型大概还是略胜一筹,因此处在主流的地位上也并不奇怪。另一方面,MOND理论能够很好地解释星系尺度上的各种现象,也是非常有趣并值得玩味的理论。
本文2021年11月8日发表于微信公众号 返朴《一对竞争的科学理论:暗物质与修改引力理论》,风云之声获授权转载。
风云之声
科学 · 爱国 · 价值